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Abstract

Human motion segmentation based on transfer subspace
learning is a rising interest in action-related tasks. Al-
though progress has been made, there are still several issues
within the existing methods. First, existing methods trans-
fer knowledge from source data to target tasks by learn-
ing domain-invariant features, but they ignore to preserve
domain-specific knowledge. Second, the transfer subspace
learning is employed in either low-level or high-level fea-
ture spaces, but few methods consider fusing multi-level fea-
ture representations for subspace learning. To this end, we
propose a novel multi-mutual consistency induced transfer
subspace learning framework for human motion segmenta-
tion. Specifically, our model factorizes the source and tar-
get data into distinct multi-layer feature spaces and reduces
the distribution gap between them through a multi-mutual
consistency learning strategy. In this way, the domain-
specific knowledge and domain-invariant properties can be
explored in different layers simultaneously. Our model also
conducts the transfer subspace learning on different layers
to capture multi-level structural information. Further, to
preserve the temporal correlations, we project the learned
representations into a block-like space. The proposed model
is efficiently optimized by using the Augmented Lagrange
Multiplier (ALM) algorithm. Experimental results on four
human motion datasets demonstrate the effectiveness of our
method over other state-of-the-art approaches.

1. Introduction
Human motion segmentation aims to partition visual

data sequences that depict human actions and activities into
a set of preferably non-overlapping and internally coherent
temporal segments. It is an important preprocessing step
before further motion and action related analytical tasks
∗Corresponding author: Jianbing Shen (shenjianbingcg@gmail.com).

[26, 38, 48, 59]. Human motion information is a key fac-
tor for temporal segmentation. However, due to the com-
plexity of temporal correlations and the high-dimensional
structure of visual representations, capturing such discrim-
inative temporal information remains as a challenging task
[23]. Therefore, several approaches have been developed
to address this problem, including model-based [49], tem-
poral proximity-based [23], representation-based [22, 25],
and subspace clustering-based approaches [12, 25]. Among
them, the subspace clustering-based methods have attracted
notable attention and obtained promising results.

Subspace clustering is a powerful technique for parti-
tioning data into multiple groups, which holds the assump-
tion that data points are drawn from multiple subspaces cor-
responding to different classes [4, 24, 33]. Several represen-
tative subspace clustering methods [8, 16, 29, 32] have been
developed to learn distinct and low-dimensional data repre-
sentations, in which the learned representations are then fed
into conventional clustering algorithms. However, it is often
difficult for these unsupervised subspace learning methods
to attain reasonable performance without prior knowledge.
Fortunately, labeled data from related tasks are often easy
to obtain. Thus, transfer learning is an ideal option for bor-
rowing knowledge from relevant source data to improve the
target tasks [5, 52]. In human motion segmentation, recent
transfer subspace learning-based approaches [46, 47] have
reported improved performance.

Although transfer subspace learning has achieved satis-
factory results in human motion segmentation, there still
exist several issues as follows. First, the transfer subspace
learning based motion segmentation imposes the data dis-
tributions of two domains to be similar. To this end, one
popular strategy is to project both the source and target
data into a common feature space. This strategy explores
domain-invariant properties but ignores the potentially use-
ful domain-specific knowledge. However, both of these two
aspects play essential roles, and it is challenging to balance



them for improved performance. Second, existing subspace
clustering-based methods tend to reconstruct data points by
using either the original or high-level features (e.g., outputs
of deep networks), with few conducting transfer subspace
learning in multi-level feature spaces to capture low-level
and high-level information simultaneously.

To address the above problems, we propose a novel
method that incorporates transfer learning and multi-level
subspace clustering into a unified framework to enhance
human motion segmentation (as shown in Fig. 1). First,
we factorize the original features of the source and the tar-
get data into implicit multi-layer feature spaces, in which a
multi-mutual consistency learning strategy is used to reduce
the distribution difference between the two domains. Sec-
ond, we carry out the transfer subspace learning in different
layers to fuse multi-level structural information effectively.
Third, we project the learned representations into a block-
like space to preserve the temporal correlations. Finally, we
show that our model can be efficiently optimized using the
Augmented Lagrange Multiplier (ALM) algorithm.

The main contributions are summarized as follows: We
present a novel human motion segmentation algorithm,
which integrates transfer learning and multi-level subspace
learning into a unified framework. Our motion segmenta-
tion model explores domain-invariant properties by using a
multi-mutual consistency learning strategy while preserving
domain-specific knowledge. We conduct multi-level trans-
fer subspace learning in different layers to simultaneously
capture low- and high-level information. Extensive exper-
iments on four public datasets demonstrate the superiority
of our model over the state-of-the-art methods.

2. Related Work
Subspace clustering builds on the assumption that data

points are drawn from multiple subspaces corresponding
to different clusters. Recently, self-representation based
subspace clustering, where each data point is expressed
with a linear combination of other data points, has cap-
tured increasing attention [60, 53, 61]. For example, Sparse
Subspace Clustering (SSC) [8] searches the sparsest rep-
resentation among the infinitely many possible representa-
tions based on `1-norm. Low-Rank Representation Cluster-
ing (LRR) [29] attempts to reveal cluster structure with a
low-rank representation. SMooth Representation clustering
(SMR) [16] analyzes the grouping effect of representation-
based methods. There are also several deep learning-based
subspace clustering approaches [19, 37, 53, 55, 57]. How-
ever, these methods cannot be directly applied in human
motion segmentation since they ignore the temporal corre-
lations between successive frames.

Temporal data clustering aims for segmenting data se-
quences into a set of non-overlapping parts. It has a wide
range of applications, from facial analytics, speech segmen-
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Figure 1: Overview of the proposed multi-mutual consistency induced
transfer subspace learning framework for human motion segmentation.
Our model first factorizes the source and target data into multi-layer im-
plicit feature spaces, in which a multi-mutual consistency learning strategy
is presented to reduce the distribution difference between the two domains.
Then, it carries out a multi-level Transfer Subspace Learning (TSL) in dif-
ferent layers to capture multi-level structural information. After that, it
fuses multi-level representations to construct an affinity matrix, and obtains
the final segmentation results by using the Normalized Cuts algorithm.

tation to human action recognition. For this purpose, semi-
Markov K-means clustering [39] attempts to exploit repet-
itive patterns. Zhou et al. [56] use a K-means kernel asso-
ciated with a dynamic temporal alignment approach. Tem-
poral Subspace Clustering (TSC) [25] learns a non-negative
dictionary and data representation under the constraint of a
temporal Laplacian regularization term. Transfer Subspace
Segmentation (TSS) [46] adopts auxiliary data and trans-
fers segmentation knowledge from source to target data.
Low-rank Transfer Subspace (LTS) [47] employs a novel
sequential graph to preserve temporal information residing
in both the source and target data. These temporal clus-
tering methods are all formulated as unsupervised learning
scenarios, some of which adopt a self-representation strat-
egy to achieve the motion segmentation task.

Transfer learning intends for leveraging on the prior
knowledge from related source data to improve the results
of target tasks. So far, plenty of transfer learning mod-
els have been proposed, such as domain-invariant feature
learning [13, 34, 42] and classifier parameter adaptation
[2, 27, 54]. Among these, domain-invariant feature learn-
ing [13] attempts to learn a common feature space where
both the domain shift and distribution difference can be mit-
igated. Several works explore the alignment of two different



domains, for instance, subspace learning [41, 50] and dic-
tionary learning [11, 62]. In the same vein, deep learning
inspired techniques have been used to integrate knowledge
transfer and learned features into one unified framework
[7, 10, 31, 45]. However, most of these methods incorporate
domain alignment strategies in their top layers, ignoring the
low-level structural information.

3. The Proposed Method
3.1. Formulation

As aforementioned, three main challenges remain for
human motion segmentation using transfer subspace learn-
ing, namely: (i) how to reduce the distribution difference
while preserving domain-specific knowledge; (ii) how to
capture multi-level information to enhance the performance
of transfer subspace learning; and (iii) how to effectively
capture the temporal correlations among motion data.

To address these challenges, we formulate our model
with three strategies: 1) multi-mutual consistency learning,
2) multi-level subspace learning, and 3) temporal correla-
tion preservation.

1) Multi-mutual consistency learning. Deep structure
learning has demonstrated its effectiveness in many real-
world applications [20, 35, 36, 51]. To capture multi-level
structural information, we use a multi-layer decomposition
process based on the deep Non-negative Matrix Factoriza-
tion (NMF) model as

X ≈ D(1)H(1)

≈ D(1)D(2)H(2)

...

≈ D(1)D(2) · · ·D(l) · · ·D(L)H(L),

(1)

where D(l) ≥ 0 and H(l) ≥ 0 (l = 1, . . . , L) denote the
basis matrix and the feature representation matrix at the l-
th layer, respectively, and L is the number of layers. It is
worth noting that the feature representations in each layer
capture different levels of information and knowledge from
the original data.

To mitigate the difference in distribution between the
source and target data, and at the same time, preserve the
knowledge from different domains, we establish our multi-
mutual consistency learning model as

L1(Xs,Xt; D
(l)
s ,D

(l)
t ,H

(l)
s ,H

(l)
t )

= ‖Xs −D(1)
s D(2)

s . . .D(L)
s H(L)

s ‖2F
+ ‖Xt −D

(1)
t D

(2)
t . . .D

(L)
t H

(L)
t ‖

2
F

+ α
∑L

l=1
Fcon(D

(l)
s ,D

(l)
t ),

(2)

where Xs ∈ Rd×ns and Xt ∈ Rd×nt denote the source and
target data, respectively. d is the feature dimension, and

ns and nt are the number of the source and target data, re-
spectively. α > 0 is a trade-off parameter. The first two
terms are used to explore the multi-level structures in both
the source and target data. The third term Fcon(·, ·) aims to
decrease the distribution difference between two domains
by penalizing the divergence of two basis matrices in dif-
ferent layers. In contrast, most existing methods directly
project the source and target data into a common space us-
ing a domain-invariant projection matrix, resulting in a loss
of domain-specific knowledge. Finally, although there are
various strategies for constraining the consistency between
D

(l)
s and D

(l)
t , in this study, we utilize a simple but effective

strategy, i.e., Fcon(D
(l)
s ,D

(l)
t ) = ‖D(l)

s −D
(l)
t ‖2F .

2) Multi-level transfer subspace learning. Existing
subspace clustering or subspace clustering-based motion
segmentation methods often reconstruct data points using
either the shallow representations (e.g., original features) or
high-level representations (e.g., features from the last layer
of deep networks). Although the high-level representations
have shown promising performance in clustering tasks, they
omit a certain amount of useful information. Thus, we pro-
pose a multi-level subspace learning strategy to effectively
exploit the structural information in different feature spaces,
which we formulate as:

L2(H(l)
s ,H

(l)
t ; Z(l)) =

∑L

l=1
‖[H(l)

s ,H
(l)
t ]−H(l)

s Z(l)‖2,1,

s.t. Z(l) ≥ 0,1>Z(l) = 1>, ∀l = 1, 2, . . . , L,

(3)

where 1 denotes a column vector with all elements being
one. The non-negative constraint Z(l) ≥ 0 enhances the
discriminative ability of the learned representations. The
constraint 1>Z(l) = 1> makes the sum of each coefficient
vector to be one, therefore suppressing the representation
coefficients from different subspaces. It is worth noting
that, in Eq. (3), the feature representation of the source data
(i.e., H

(l)
s ) is regarded as a dictionary, which is then used

to reconstruct the feature representations of both the source
and target data. This enables knowledge from the source
data to be transferred to the target task. Additionally, ‖·‖2,1
denotes the `2,1-norm, which encourages the columns of a

matrix to be zero [29], i.e., ‖E‖2,1 =
∑N
j=1

√∑M
i=1[Eij ]2,

where E ∈ RM×N . By using the `2,1-norm, an underly-
ing assumption is that any corruptions are sample-specific,
i.e., some data vectors may be corrupted while the others
are clean. Remarks: Our model learns multiple transfer-
able subspaces within a layer-wise framework, which can
capture multi-level structural information and provide more
substantial knowledge to improve motion segmentation per-
formance.

3) Temporal correlation preservation. Temporal and
structural information is crucial for accurate clustering
since human motion data are consecutive and sequential.



Thus, it is essential to preserve the temporal information
in the learned representation Z. To achieve this, a pop-
ular strategy is to regulate the i-th cofficient’s neighbors
[zi−τ/2, · · · , zi−1, zi+1, · · · , zi+τ/2] to be close to zi, where
τ is the length of relevant frames. Here, we first build a
weight matrix S [25, 46], where we define each element as
follows:

sij =


1, if |i− j| ≤ τ, l(xi) = l(xj), for source data;

1, if |i− j| ≤ τ, for target data;

0, otherwise,

(4)

where l(xi) denotes the action label of the i-th sample xi in
the source data. We observe that the weight matrix has a
block-like structure. To preserve the temporal correlations,
we project the representation Z into a block-like space,
which we formulate as follows:

L3(S,Z(l); W(l)) =∑L

l=1
(‖S−W(l)Z(l)‖2F + γ‖W(l)‖∗),

(5)

where γ is a trade-off parameter, and ‖ · ‖∗ is the matrix
nuclear-norm [29]. Since there exist temporal correlations
in the learned representation, we introduce the low-rank
regularization on the projection matrix W(l) by using the
nuclear norm [29].

Overall formulation: Finally, we integrate the above
three components (Eqs. (2)(3)(5)) into a single unified ob-
jective function as follows:

minL1(Xs,Xt; D
(l)
s ,D

(l)
t ,H

(l)
s ,H

(l)
t )︸ ︷︷ ︸

Multi-mutual consistency learning

+

λL2(H(l)
s ,H

(l)
t ; Z(l))︸ ︷︷ ︸

Multi-level transfer subspace learning

+ βL3(S,Z(l); W(l))︸ ︷︷ ︸
Temporal correlation preservation

= min
Ω
‖Xs −D(1)

s D(2)
s . . .D(L)

s H(L)
s ‖2F

+ ‖Xt −D
(1)
t D

(2)
t . . .D

(L)
t H

(L)
t ‖

2
F

+ α
∑L

l=1
‖D(l)

s −D
(l)
t ‖

2
F

+ λ
∑L

l=1
‖[H(l)

s ,H
(l)
t ]−H(l)

s Z(l)‖2,1

+ β
∑L

l=1
‖S−W(l)Z(l)‖2F + γ

∑L

l=1
‖W(l)‖∗,

s.t. Z(l) ≥ 0,1>Z(l) = 1>,∀l = 1, 2, . . . , L,

(6)

where Ω = {D(l)
s ≥ 0,D

(l)
t ≥ 0,H

(l)
s ≥ 0,H

(l)z
t ≥

0,Z(l),W(l)} (l = 1, 2, . . . , L) is the variable set to be op-
timized, and α, λ, β, and γ are trade-off parameters.

3.2. Clustering

By using Eq. (6), we can obtain the learned multi-level
representations Z(l)(l = 1, 2, . . . , L), and then the corre-
sponding target representations Z

(l)
t ∈ Rns×nt can be ex-

tracted from Z(l) = [Z
(l)
s ,Z

(l)
t ]. To exploit the intrinsic re-

lationships among within-cluster samples in human motion

data, we utilize the strategy from [25] and introduce another
similarity measurement to construct an affinity matrix A.
Each element of A can be defined as the distance between
any pair of the learned target representations, which is:

a(i, j) =
1

L

∑L

l=1

z
(l)
t,i

>
z

(l)
t,j

‖z(l)
t,i‖2‖z

(l)
t,j‖2

, (7)

where z(l)t,i and z
(l)
t,j denote the i-th and j-th columns of z(l)t ,

respectively. Then, the Normalized Cut [43] algorithm is
applied to the learned affinity matrix A to produce the tem-
poral segmentation results.

3.3. Optimization

The objective function in Eq. (6) is not jointly convex
with respect to all variables. Thus, we utilize the ALM [28]
algorithm to efficiently solve it. To adopt the ALM strategy
to our problem, we introduce one auxiliary variable J(l) to
replace W(l) in the nuclear term of our objective function.
Then, we solve the previous optimization function by mini-
mizing the following ALM problem:

L(Ω) = ‖Xs −D(1)
s D(2)

s . . .D(L)
s H(L)

s ‖2F
+ ‖Xt −D

(1)
t D

(2)
t . . .D

(L)
t H

(L)
t ‖

2
F

+ α
∑L

l=1
‖D(l)

s −D
(l)
t ‖

2
F + λ

∑L

l=1
‖E(l)‖2,1

+ β
∑L

l=1
‖S−W(l)Z(l)‖2F + γ

∑L

l=1
‖J(l)‖∗

+
∑L

l=1
Φ
(
Λ

(l)
1 , [H(l)

s ,H
(l)
t ]−H(l)

s Z(l) −E(l)
)

+ Φ
(
Λ

(l)
2 ,W(l) − J(l)

)
,

s.t. Z(l) ≥ 0,1>Z(l) = 1>, ∀l = 1, 2, . . . , L,

(8)

where Φ(Λ,Q) = µ
2
‖Q‖2F + 〈Λ,Q〉, with 〈·, ·〉 denoting the

matrix inner product. µ is a positive penalty scalar, and Λ
(l)
1

and Λ
(l)
2 (l = 1, 2, . . . , L) are Lagrangian multipliers. We

describe the optimization steps for each subproblem below.
Ds-subproblem: The optimization problem associated

with Ds can be written as

min
Ds≥0

‖Xs −D(1)
s D(2)

s . . .D(L)
s H(L)

s ‖2F

+ α
∑L

l=1
‖D(l)

s −D
(l)
t ‖

2
F , ∀l = 1, 2, . . . , L.

(9)

By taking the derivative of Eq. (9) w.r.t. D
(l)
s and using

the Karush-Kuhn-Tucker (KKT) condition [1], we obtain
the following updating rule:

D(l)
s ← D(l)

s �

Θ
(l−1)
s

>
XsH

(L)
s

>
Ω

(l+1)
s

>
+ αD

(l)
t

Θ
(l−1)
s

>
Θ

(l−1)
s D

(l)
s Ω

(l+1)
s H

(L)
s H

(L)
s

>
Ω

(l+1)
s

>
+ αD

(l)
s

,

(10)



where Θ
(l−1)
s = D

(1)
s D

(2)
s · · ·D(l−1)

s , and Ω
(l+1)
s =

D
(l+1)
s D

(l+2)
s · · ·D(L)

s .
Similarly, we have the updating rule for D

(l)
t as follows

D
(l)
t ← D

(l)
t �

Θ
(l−1)
t

>
XtH

(L)
t

>
Ω

(l+1)
t

>
+ αD

(l)
s

Θ
(l−1)
t

>
Θ

(l−1)
t D

(l)
t Ω

(l+1)
t H

(L)
t H

(L)
t

>
Ω

(l+1)
t

>
+ αD

(l)
t

.

(11)

Hs-subproblem: The optimization problem associated
with H

(l)
s can be written as

min
Hs≥0

‖Xs −D(1)
s D(2)

s . . .D(l)
s H(l)

s ‖2F

+ Φ
(
Λ

(l)
1 , [H(l)

s ,H
(l)
t ]−H(l)

s Z(l) −E(l)
)
.

(12)

By taking the derivative of Eq. (12) w.r.t. H
(l)
s and using the

KKT condition [1], we then obtain the following updating
rule:

H(l)
s ← H(l)

s �
2Θ

(l)
s

>
Xs + µ(E

(l)
s −Λ

(l)
1,s/µ)(I− Z

(l)
s )>

2Θ
(l)
s

>
Θ

(l)
s H

(l)
s + µH

(l)
s (I− Z

(l)
s )(I− Z

(l)
s )>

.

(13)

where E(l) = [E
(l)
s ,E

(l)
t ], Z(l) = [Z

(l)
s ,Z

(l)
t ], and Λ

(l)
1 =

[Λ
(l)
1,s,Λ

(l)
1,t]. E

(l)
s , Z

(l)
s and Λ

(l)
1,s denote the corresponding

parts to H
(l)
s , and I is an identity matrix.

Similarly, we have the updating rule for H
(l)
t as follows:

H
(l)
t ← H

(l)
t �

2Θ
(l)
t

>
Xt + µ(H

(l)
s Z

(l)
t + E

(l)
t −

Λ
(l)
1,t

µ
)

2Θ
(l)
t

>
Θ

(l)
t H

(l)
t + µH

(l)
t

.

(14)

W-subproblem: W(l) can be optimized by solving

min
W(l)

β‖S−W(l)Z(l)‖2F + Φ(Λ
(l)
2 ,W(l) − J(l)). (15)

Taking the derivative of the above objective with respect
to W(l), we obtain the closed-form solution

W(l) =

(
SZ(l)> +

µJ(l) −Λ
(l)
2

2β

)(
Z(l)Z(l)> +

µI

2β

)−1

.

(16)

J-subproblem: The optimization problem associated
with J(l) can be written as

min
J(l)

γ

µ
‖J(l)‖∗ +

1

2
‖J(l) − (W(l) + Λ

(l)
2 /µ)‖2F . (17)

The above problem can be solved via using a singular
value thresholding operator [3].

Z-subproblem: Dropping the unrelated terms with re-
spect to Z(l) yields

min
Z(l)

β‖S−W(l)Z(l)‖2F

+ Φ(Λ
(l)
1 , [H(l)

s ,H
(l)
t ]−H(l)

s Z(l) −E(l)),

s.t. Z(l) ≥ 0,1>Z(l) = 1>.

(18)

Algorithm 1: Solving problem (6) via ALM.
1 Input: Source data: Xs and target data Xt, parameters α, λ, β,

and γ.
2 Initialize: Λ

(l)
1 = 0, Λ

(l)
2 = 0, ε = 10−4, ρ = 1.5,

µ = 10−4, maxµ = 106.
3 Output: Z(l), l = 1, 2, . . . , L.
4 while not converged do
5 for l=1,2,. . . ,L do
6 Update D

(l)
s , D

(l)
t , H

(l)
s , H

(l)
t , W(l), J(l), Z(l),

E(l), Λ
(l)
1 , and Λ

(l)
2 using Eqs. (10), (11), (13), (14),

(16), (17), (18), (19), and (20), respectively.
7 end
8 Update the parameter µ via µ = min(ρµ,maxµ);
9 Check the convergence conditions:

10 ‖[H(l)
s ,H

(l)
t ]−H

(l)
s Z(l) −E(l)‖∞ < ε

11 and ‖W(l) − J(l)‖∞ < ε.
12 end

By taking the derivative of (18) w.r.t Z(l) and setting it to
zero, we can obtain its closed-form solution. After that, we
apply an efficient iterative algorithm [18] to obtain the final
solution of Z(l).

E-subproblem: The error term E(l) can be updated by
solving the following problem:

min
E(l)

λ

µ
‖E(l)‖2,1 +

1

2
‖E(l) −G‖2F , (19)

where G = [H
(l)
s ,H

(l)
t ]−H

(l)
s Z(l)+Λ

(l)
1 /µ. This subproblem

can be efficiently solved by using the algorithm in [30].
Multipliers updating: The multipliers Λ

(l)
1 and Λ

(l)
2 can

be updated by using the following equation:{
Λ

(l)
1 := Λ

(l)
1 + µ([H(l)

s ,H
(l)
t ]−H(l)

s Z(l) −E(l)),

Λ
(l)
2 := Λ

(l)
2 + µ(W(l) − J(l)).

(20)

Note that we pretrain each of the layers to obtain ini-
tial approximations for D

(l)
s , D

(l)
t , H

(l)
s , and H

(l)
t . This pre-

training process can reduce the training time of our model,
and its effectiveness has also been proven in deep auto-
encoder networks [15]. Taking the source data as an ex-
ample, we decompose Xs ≈ D

(1)
s H

(1)
s and then decompose

H
(1)
s ≈ D

(2)
s H

(2)
s until all layers are initialized. Then, we

repeat the updating steps until convergence. The details for
solving Eq. (6) via the ALM algorithm are summarized in
Algorithm 1.

3.4. Complexity Analysis

The major computational burden of Algorithm 1 lies in
two stages, i.e., pretraining and model updating, so we ana-
lyze them separately. The computational complexity for the
pretraining step is of orderO(Ltp(n

2
sp+nsp

2 +n2
tp+ntp

2)),
where tp is the number of iterations, and p is the maximal
layer size out of all layers. In the model updating stage, the
updates for D

(l)
s , D

(l)
t , H

(l)
s , H(l)

t , and J(l) are the most time-
consuming parts, leading to a computational complexity of



order O(Ltu(n2
sp+ nsp

2 + n2
tp+ ntp

2 + p3 + n3)), where tu
is the number of iterations in this step, and n = ns + nt.
Finally, considering ns, nt > p for the current task, the
overall computational complexity of the proposed model is
O(L((tp + tu)(n2

sp+ nsp
2 + n2

tp+ ntp
2) + tun

3)).

4. Experimental Results
4.1. Human Motion Datasets

We conduct the comparison experiments on four typi-
cal human motion datasets (see Fig. 2 for some example
frames) as follows: • Keck Gesture Dataset (Keck) [21]
consists of 14 different actions based on military signals
with a frame size of 640 × 480. In this dataset, subjects
perform 14 gestures and actions. The videos were obtained
by using a fixed camera with the subjects standing in front
of a static and simple background. • Multi-Modal Action
Detection Dataset (MAD) [17] consists of actions captured
in multiple modalities by using a Microsoft Kinect V2 sys-
tem in RGB, depth and skeleton formats. Specifically, the
RGB frames are with the size of 240 × 320, and 3D depth
images are with the size of 240×320. Besides, each subject
performs 35 actions in two different indoor environments.
•Weizmann Dataset (Weiz) [14] consists of 90 video se-
quences, which include 10 actions (running, walking, skip-
ping, bending, etc.) performed by nine subjects in an out-
door environment. All videos have the size of 180 × 144
with 50 fps. • UT-Interaction Dataset (UT) [40] consists
of 20 videos, each of which includes six classes of human-
human interactions (e.g., punching, kicking, pushing, hug-
ging, pointing, and handshaking). All video sequences are
around 60 seconds long.

4.2. Experimental Setup

Dataset settings. Following the dataset preprocessing in
[47], we utilize the extracted HOG features [6] with a 324-
dimensional feature vector for each frame. To make seg-
mentation results comparable across different datasets, all
input videos are modified to be a sequence of 10 actions us-
ing the same settings as in [47]. In model evaluations, we
randomly select five sequences as the source data and then
report the average performance.
Compared methods. We compare the proposed model
with the following state-of-the-art methods: (1) Spectral
Clustering (SC) [33]. The features of target samples are fed
into the standard spectral clustering algorithm [33] to obtain
the clustering results. (2) K-medoids (KMD) selects target
samples as centers and clusters them using a generalization
of the Manhattan Norm to measure the distance between
points. (3) Low-Rank Representation (LRR) [29] incor-
porates a low-rank constraint on the representation coeffi-
cients. (4) Ordered Subspace Clustering (OSC) [44] takes
a temporal constraint and forces representations of the tem-

(a) Keck (b) MAD

(c) Weiz (d) UT

Figure 2: Sampling frames of four human motion datasets.

poral data to be similar. (5) Sparse Subspace Clustering
(SSC) [8] assumes that there exists a dictionary that can
represent all data points by using a sparse combination. It
also applies a sparse constraint to the representation coef-
ficients. (6) Least Square Regression (LSR) [32] utilizes
the Frobenius norm to encourage a grouping effect which
tends to cluster highly correlated data together. (7) Tem-
poral Subspace Clustering (TSC) [25] presents a temporal
Laplacian regularization and a jointly learned dictionary to
learn distinctive codes for human motion data. (8) Transfer
Subspace Segmentation (TSS) [46] utilizes auxiliary data
and transfers segmentation knowledge from a source to tar-
get dataset. (9) Low-rank Transfer Subspace (LTS) [47]
presents a novel sequential graph to preserve temporal in-
formation residing in both the source and target data.
Evaluation metrics and parameters settings. To compre-
hensively compare our proposed method with other state-
of-the-art methods, we utilize two popular metrics to evalu-
ate the segmentation quality, i.e., Normalized Mutual Infor-
mation (NMI) and Accuracy (ACC). Note that, higher val-
ues indicate better performance for the two metrics. We first
tune λ in the range of {10−5, 10−4, . . . , 102} by fixing the
other parameters, obtaining a better performance when λ =
0.1. Thus, we empirically set λ to be 0.1, and tune the pa-
rameters α, β, and γ in the range of {10−5, 10−4, . . . , 102}.
Furthermore, the number of layers for our model is set as 4,
and the correlated frame distance τ is set to 11.

4.3. Performance Comparison

In all comparison experiments, we set one sequence as
the source and another one as the target. As we use four
datasets for our evaluations, we report the segmentation re-
sults when testing on one dataset at one time, using the re-
maining three as the source domains. Besides, since SC,
KMD, LRR, OSC, SSC, and LSR are not designed to utilize
source information, we only employ target videos as input
for these methods. For the TSC, TSS, and LRT methods,
we input both source and target videos for segmentation.
The comparison segmentation results are shown in Table 1,
where bold indicates the best performance. Compared with
SC, KMD, LRR, OSC, SSC, and LRR, our method trans-
fers useful information from source data to learn distinc-
tive representations of the target data, resulting in improv-
ing the segmentation performance. Compared with trans-



Table 1: Clustering comparison results in terms of NMI and ACC on four human motion datasets. Names in brackets indicate the source datasets. M, K,
W, and U denote MAD, Keck, Weizmann, and UT-interaction, respectively. The best clustering results are denoted in bold when using the same source data.

(a) Results on Keck dataset

Method NMI ↑ ACC ↑
SC 0.4744 0.3886

KMD 0.4702 0.3970
LRR 0.4862 0.4297
OSC 0.5931 0.4393
SSC 0.3858 0.3137
LSR 0.4548 0.4894

TSC(M) 0.6935 0.4653
TSS(M) 0.8049 0.5395
LTS(M) 0.8226 0.5509
Ours(M) 0.8270 0.6010
TSC(W) 0.6862 0.4548
TSS(W) 0.7928 0.5485
LTS(W) 0.7983 0.5649
Ours(W) 0.8196 0.5915
TSC (U) 0.6797 0.4421
TSS(U) 0.7937 0.4951
LTS(U) 0.7947 0.5519
Ours(U) 0.8120 0.6105

(b) Results on MAD dataset

Method NMI ↑ ACC ↑
SC 0.4369 0.3639

KMD 0.3914 0.3226
LRR 0.2249 0.2397
OSC 0.5589 0.4327
SSC 0.4758 0.3817
LSR 0.3667 0.3979

TSC(K) 0.7691 0.5473
TSS(K) 0.8286 0.5792
LTS(K) 0.8244 0.5874
Ours(K) 0.8099 0.6125
TSC(W) 0.8202 0.5736
TSS(W) 0.8202 0.5736
LTS(W) 0.8213 0.5906
Ours(W) 0.8307 0.6158
TSC (U) 0.7691 0.5315
TSS(U) 0.8108 0.5479
LTS(U) 0.8211 0.5980
Ours(U) 0.8314 0.6163

(c) Results on Weizman dataset

Method NMI ↑ ACC ↑
SC 0.5435 0.4127

KMD 0.5289 0.4441
LRR 0.4382 0.3638
OSC 0.7047 0.5216
SSC 0.6009 0.4576
LSR 0.5093 0.5091

TSC(K) 0.7971 0.5931
TSS(K) 0.8326 0.6030
LTS(K) 0.8599 0.6391
Ours(K) 0.8371 0.6436
TSC(M) 0.8032 0.5961
TSS(M) 0.8509 0.6208
LTS(M) 0.8579 0.6156
Ours(M) 0.8232 0.6348
TSC (U) 0.7796 0.5402
TSS(U) 0.8124 0.5865
LTS(U) 0.8267 0.6122
Ours(U) 0.8351 0.6371

(d) Results on UT dataset

Method NMI ↑ ACC ↑
SC 0.4894 0.4477

KMD 0.5108 0.5122
LRR 0.4051 0.4162
OSC 0.6877 0.5846
SSC 0.4998 0.4389
LSR 0.4322 0.5183

TSC(K) 0.7216 0.5213
TSS(K) 0.7746 0.5371
LTS(K) 0.7961 0.6127
Ours(K) 0.8121 0.6148
TSC(M) 0.7442 0.5288
TSS(M) 0.7783 0.5335
LTS(M) 0.8128 0.6299
Ours(M) 0.8239 0.6433
TSC (W) 0.7136 0.5111
TSS(W) 0.7878 0.5944
LTS(W) 0.8035 0.6296
Ours(W) 0.8198 0.6463
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Figure 3: Visualization of clustering results on a sample video of the
Keck dataset. The ten colors denote ten different temporal clusters.

fer clustering-based segmentation methods (including TSC,
TSS, and TSS), our method also obtains much better per-
formance. This is because our approach simultaneously
explores domain-invariant features and preserves domain-
specific knowledge. These two aspects are equally impor-
tant for transfer learning. Additionally, our method fuses
multi-level representations to construct the affinity matrix
for motion segmentation, which effectively preserves the
structural information from different layers.

In Fig. 3, we visualize the clustering results rendered
by our method as well as other comparison methods on
a sample video of the Keck dataset. Different colors in-

dicate different action clusters. As can be seen, the LRR
and SSC methods generate multiple fragments and cannot
achieve meaningful and accurate segmentation. This is be-
cause they do not consider the temporal information. Com-
pared with LRR and SSC, TSC performs better but it still
generates some unexpected fragments. LTS and TSS obtain
relative better performance in most cases, but they occa-
sionally generate fragments in segmentation results. Over-
all, our method obtains continuous segments and achieves
much better segmentation results than other methods.

4.4. Model Study

Parameter sensitivity. In our approach, three key regu-
larization parameters, i.e., α, β and γ, need to be manually
tuned. To investigate the effects of the three parameters on
the model output, we fix the value of one parameter and
change the other two parameters. The experimental results
on the Keck dataset are shown in Fig. 4 (a)(b)(c). From
the results, it can be observed that our proposed method ob-
tains much better NMI performance when α ∈ [0.001, 1],
β ∈ [0.001, 0.1], and γ ∈ [0.01, 1]. Moreover, the experi-
mental results also indicate that every term in our model is
useful for improving the segmentation results.

Convergence analysis. We compute the relative errors
(i.e., ‖[H(l)

s ,H
(l)
t ]−H

(l)
s Z(l)−E(l)‖∞ and ‖W(l)−J(l)‖∞) to

demonstrate the convergence of our optimization algorithm.
We report the mean values of different layers in the two
terms, and the convergence curves on the Keck dataset are
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Figure 4: Parameter sensitivity and convergence analysis on Keck dataset. (a) Sensitivity analysis for parameters β and γ, (b) Sensitivity analysis for
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Figure 6: Performance comparison (NMI) when using representations
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presented in Fig. 4 (d). Note that, for a better presentation,
the errors are normalized into the range [0, 1]. As can be
observed, our model converges within about 50 iterations.

Source data analysis. To evaluate the effectiveness of
the source information for the segmentation task, we first
test the source action video (UT as an example) that con-
tains different numbers of actions, and the results on the
Keck dataset are shown in Fig. 5 (a). As can be observed,
the performance increases when the number of actions in-
creases. This indicates that the diversity of the source data
is crucial for improving the performance. More actions in
the source data can transfer much useful knowledge to en-
sure that our model learns the distinctive representation of
the target data. Besides, we utilize the frames with different
ratios (i.e., 0.1, 0.2, · · · , 1) of each action, while keeping
the number of actions to be consistent. We evaluate the per-
formance on the Keck dataset, as shown in Fig. 5 (b). The
results indicate that the performance of our model increases

when the ratio of frames increases.
Ablation study. To validate the effectiveness of fusing

the multi-level subspace representations from different fea-
ture spaces, we show the results of our method on the Keck
dataset when using the representations from the first layer,
the last layer and the fused multi-layers in Fig. 6. It can be
observed that our fusion strategy obtains much better per-
formance than conducting subspace learning only on the
representation from the first layer or the last layer. This indi-
cates the effectiveness of our model which fuses the multi-
level subspace representations for transfer learning.

5. Conclusion
We have proposed a multi-mutual consistency induced

transfer subspace learning framework for human motion
segmentation. Our model first factorizes the original fea-
tures of the source and target data into implicit multi-layer
feature spaces, in which we use a mutual consistency learn-
ing strategy to reduce the distribution difference between
the two domains. Then, we carry out the transfer sub-
space learning in multi-level feature spaces to effectively
exploit different-level structural information. Furthermore,
we present a temporal correlation preservation term to im-
prove the effectiveness of learned representations. We ob-
tain the final representation by fusing multiple subspace
representations from different layers. Experimental results
on benchmark datasets show that our method can signifi-
cantly outperform the state-of-the-art methods. In the fu-
ture, we can apply our multi-level feature representations
to other related tasks, such as multi-modal learning [58],
multi-source object detection [9], etc.
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[24] H. Kriegel, P. Kröger, and A. Zimek. Clustering high-
dimensional data: A survey on subspace clustering, pattern-
based clustering, and correlation clustering. ACM TKDD,
3(1):1, 2009. 1

[25] S. Li, K. Li, and Y. Fu. Temporal subspace clustering for
human motion segmentation. In ICCV, pages 4453–4461,
2015. 1, 2, 4, 6

[26] T. Li, Z. Liang, S. Zhao, J. Gong, and J. Shen. Self-learning
with rectification strategy for human parsing. In CVPR,
2020. 1

[27] W. Li, Z. Xu, D. Xu, D. Dai, and L. Van Gool. Domain
generalization and adaptation using low rank exemplar svms.
IEEE TPAMI, 40(5):1114–1127, 2017. 2

[28] Z. Lin, R. Liu, and Z. Su. Linearized alternating direction
method with adaptive penalty for low-rank representation. In
NIPS, pages 612–620, 2011. 4

[29] G. Liu, Z. Lin, and et al. Robust recovery of subspace struc-
tures by low-rank representation. IEEE TPAMI, 35(1):171–
184, 2013. 1, 2, 3, 4, 6

[30] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust
recovery of subspace structures by low-rank representation.
IEEE TPAMI, 35(1):171–184, 2012. 5

[31] M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning trans-
ferable features with deep adaptation networks. In ICML,
pages 97–105, 2015. 3

[32] C.-Y. Lu, H. Min, Z.-Q. Zhao, L. Zhu, D.-S. Huang, and
S. Yan. Robust and efficient subspace segmentation via
least squares regression. In ECCV, pages 347–360. Springer,
2012. 1, 6

[33] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering:
Analysis and an algorithm. In NIPS, pages 849–856, 2002.
1, 6

[34] J. Ni, Q. Qiu, and R. Chellappa. Subspace interpolation via
dictionary learning for unsupervised domain adaptation. In
CVPR, pages 692–699, 2013. 2

[35] Z. Niu, M. Zhou, L. Wang, X. Gao, and G. Hua. Hierarchical
multimodal lstm for dense visual-semantic embedding. In
ICCV, pages 1881–1889, 2017. 3

[36] P. Pan, Z. Xu, Y. Yang, F. Wu, and Y. Zhuang. Hierarchical
recurrent neural encoder for video representation with appli-
cation to captioning. In CVPR, pages 1029–1038, 2016. 3

[37] X. Peng, J. Feng, S. Xiao, W. Y. Yau, J. T. Zhou, and S. Yang.
Structured autoencoders for subspace clustering. IEEE TIP,
27(10):5076–5086, 2018. 2

[38] S. Qi, W. Wang, B. Jia, J. Shen, and S.-C. Zhu. Learning
human-object interactions by graph parsing neural networks.
In ECCV, pages 401–417, 2018. 1



[39] M. W. Robards and P. Sunehag. Semi-markov kmeans clus-
tering and activity recognition from body-worn sensors. In
ICDM, pages 438–446. IEEE, 2009. 2

[40] M. S. Ryoo and J. K. Aggarwal. Spatio-temporal relationship
match: video structure comparison for recognition of com-
plex human activities. In ICCV, volume 1, page 2. Citeseer,
2009. 6

[41] M. Shao, D. Kit, and Y. Fu. Generalized transfer subspace
learning through low-rank constraint. IJCV, 109(1-2):74–93,
2014. 3

[42] S. Shekhar, V. M. Patel, H. V. Nguyen, and R. Chellappa.
Generalized domain-adaptive dictionaries. In CVPR, pages
361–368, 2013. 2

[43] J. Shi and J. Malik. Motion segmentation and tracking using
normalized cuts. In ICCV, pages 1154–1160. IEEE, 1998. 4

[44] S. Tierney, J. Gao, and Y. Guo. Subspace clustering for se-
quential data. In CVPR, pages 1019–1026, 2014. 6

[45] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko. Simultane-
ous deep transfer across domains and tasks. In ICCV, pages
4068–4076, 2015. 3

[46] L. Wang, Z. Ding, and Y. Fu. Learning transferable subspace
for human motion segmentation. In AAAI, 2018. 1, 2, 4, 6

[47] L. Wang, Z. Ding, and Y. Fu. Low-rank transfer human mo-
tion segmentation. IEEE TIP, 28(2):1023–1034, 2018. 1, 2,
6

[48] W. Wang, Z. Zhang, S. Qi, J. Shen, Y. Pang, and L. Shao.
Learning compositional neural information fusion for human
parsing. In ICCV, pages 5703–5713, 2019. 1

[49] Y. Xiong and D.-Y. Yeung. Mixtures of arma models for
model-based time series clustering. In ICDM, pages 717–
720. IEEE, 2002. 1

[50] Y. Xu, X. Fang, Ji. Wu, X. Li, and D. Zhang. Discriminative
transfer subspace learning via low-rank and sparse represen-
tation. IEEE TIP, 25(2):850–863, 2015. 3

[51] M. Ye and J. Shen. Probabilistic structural latent representa-
tion for unsupervised embedding. In CVPR, 2020. 3

[52] A. R. Zamir, A. Sax, W. Shen, L. J. Guibas, J. Malik, and S.
Savarese. Taskonomy: Disentangling task transfer learning.
In CVPR, pages 3712–3722, 2018. 1

[53] C. Zhang, H. Fu, Q. Hu, X. Cao, Y. Xie, D. Tao, and D.
Xu. Generalized latent multi-view subspace clustering. IEEE
TPAMI, 42(1):86–99, 2018. 2

[54] J. Zhang, W. Li, and P. Ogunbona. Joint geometrical and
statistical alignment for visual domain adaptation. In CVPR,
pages 1859–1867, 2017. 2

[55] H. Zhao, Z. Ding, and Y. Fu. Multi-view clustering via deep
matrix factorization. In AAAI, pages 2921–2927, 2017. 2

[56] F. Zhou, F. De la Torre, and J. K. Hodgins. Hierarchical
aligned cluster analysis for temporal clustering of human
motion. IEEE TPAMI, 35(3):582–596, 2012. 2

[57] P. Zhou, Y. Hou, and J. Feng. Deep adversarial subspace
clustering. In CVPR, pages 1596–1604, 2018. 2

[58] T. Zhou, H. Fu, G. Chen, J. Shen, and L. Shao. Hi-Net:
Hybrid-fusion network for multi-modal MR image synthesis.
IEEE TMI, 2020. 8

[59] T. Zhou, W. Wang, S. Qi, H. Ling, and J. Shen. Cascaded
human-object interaction recognition. In CVPR, 2020. 1

[60] T. Zhou, C. Zhang, C. Gong, H. Bhaskar, and J. Yang. Mul-
tiview latent space learning with feature redundancy mini-
mization. IEEE TCYB, 2018. 2

[61] T. Zhou, C. Zhang, X. Peng, H. Bhaskar, and J. Yang. Dual
shared-specific multiview subspace clustering. IEEE TCYB,
2019. 2

[62] F. Zhu and L. Shao. Weakly-supervised cross-domain dictio-
nary learning for visual recognition. IJCV, 109(1-2):42–59,
2014. 3


